首页> 外文会议>1st International conference on frontiers of laser processing. >In-situ monitoring of AlGaAs growth with time-resolved reflectance anisotropy spectroscopy and normalized reflectance by MOCVD
【24h】

In-situ monitoring of AlGaAs growth with time-resolved reflectance anisotropy spectroscopy and normalized reflectance by MOCVD

机译:利用时间分辨反射率各向异性光谱和MOCVD归一化反射率现场监测AlGaAs的生长

获取原文
获取原文并翻译 | 示例

摘要

AlGaAs lattice matched to GaAs substrates is a key material in vertical-cavity surface-emitting lasers (VCSELs) and edge-emitting lasers (EEL). Timeresolved re? ectance anisotropy spectroscopy (RAS) and normalized re? ectance (NR) measurements have proven their potential for the development of growth AlGaAs. In this paper, we report on the monitor and analysis of growth process of Al,Ga1-x As to optimize vertical-cavity surface-emitting lasers (VCSELs) and edge-emitting lasers (EEL) growth by using timeresolved reflectance anisotropy spectroscopy (RAS) and normalized reflectance (NR). Multi-layer AlxGa1x,As structures were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD). The NR and RAS signals at photon energy near the fundamental band gap show an oscillatory behavior during growth. We show that the different contribution of surface-induced optical anisotropy and interface-induced optical anisotropy could be distinguished in situ by RAS transient. The period of NR oscillation can be directly related to the growth rate, the error of calculated growth rate was lower than 0. 02 nm/s compared to the SEM measurement results. A significant dependence of NR and RAS signals on the aluminum compositions and surface stoichiometry at 2. OeV has been found. The first minimum of the NR oscillations of AlGaAs layers almost linearly with aluminium compositions and could be used for the determination of graded composition. Time-resolved reflectance anisotropy spectroscopy (RAS) at photon energies 2. 0 eV near the fundamental bandgap of Al0.95Ga0.05 As layer shows an oscillatory behavior during growth as shown in Fig. 1. As can clearly be seen the RAS signal difference between AlxGa1-x As and GaAs layers, this composition dependence is believed to be related to changing surface stoichiometry. Fig. 2 shows a significant dependence on the aluminium compositions in the AlxGa1-x As layers. With increasing aluminium compositions the amplitude of the Fabry Perot oscillations increase due to the higher difference of the refractive index between GaAs and AlxGa1-x As layer. Fig. 3 shows NR transients taken at 2. 0 eV during growth of lattice-matched AlGaAs for x=0, 0. 23, 0. 40, 0. 95 and linear grading from Al0.6 Gao. 4 As to pure GaAs. The first minimum of the NR oscillations of AlGaAs layers (Fig. 3) almost linearly with aluminium compositions as shown in Fig. 4, which could be used for determination of graded composition.
机译:与GaAs基板匹配的AlGaAs晶格是垂直腔面发射激光器(VCSEL)和边缘发射激光器(EEL)中的关键材料。时间解决了吗?各向异性光谱(RAS)和归一化反射率电容(NR)测量已证明其在生长AlGaAs方面的潜力。在本文中,我们报告了Al,Ga1-x As的生长过程的监测和分析,以通过使用时间分辨反射各向异性光谱(RAS)优化垂直腔面发射激光器(VCSEL)和边缘发射激光器(EEL)的生长)和归一化反射率(NR)。通过金属有机化学气相沉积(MOCVD)在GaAs(001)衬底上生长多层AlxGa1x,As结构。在基带隙附近的光子能量处的NR和RAS信号在生长过程中表现出振荡行为。我们表明,可以通过RAS瞬变原位区分表面诱导的光学各向异性和界面诱导的光学各向异性的不同贡献。 NR振荡的周期与生长速率直接相关,与SEM测量结果相比,计算出的生长速率误差小于0. 02 nm / s。已经发现NR和RAS信号对铝成分和在2 OeV下的表面化学计量有显着依赖性。 AlGaAs层的NR振荡的第一个最小值与铝成分几乎呈线性关系,可用于确定梯度成分。在光子能量为2时的时间分辨反射率各向异性光谱(RAS)。Al0.95Ga0.05 As的基本带隙附近为0 eV,如图1所示,该层在生长过程中表现出振荡行为。可以清楚地看到RAS信号差异在AlxGa1-x As和GaAs层之间,这种成分依赖性被认为与表面化学计量的变化有关。图2显示了对AlxGa1-x As层中铝成分的显着依赖性。随着铝成分的增加,由于GaAs和AlxGa1-x As层之间折射率的较高差异,法布里珀罗振荡的幅度增加。图3显示了在晶格匹配的AlGaAs的生长期间,在x = 0、0。23、0。40、0。95和从Al0.6 Gao线性分级时,在2. 0 eV处获取的NR瞬变。 4关于纯砷化镓。 AlGaAs层的NR振荡的第一个最小值(图3)与铝成分几乎呈线性关系,如图4所示,可用于确定梯度成分。

著录项

  • 来源
  • 会议地点 Changchun(CN);Changchun(CN)
  • 作者单位

    Key Laboratory of Excited State Processes) Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, China;

    Key Laboratory of Excited State Processes) Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;

    Key Laboratory of Excited State Processes) Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;

    Key Laboratory of Excited State Processes) Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, China;

    Key Laboratory of Excite;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 激光技术、微波激射技术;激光技术、微波激射技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号