首页> 外文会议>SPIE Eco-Photonics 2011 : Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future >Characterization of multi-interface, multi-layer heavily doped Si:P nanostructures using electromagnetic propagation
【24h】

Characterization of multi-interface, multi-layer heavily doped Si:P nanostructures using electromagnetic propagation

机译:使用电磁传播表征多界面,多层重掺杂Si:P纳米结构

获取原文
获取原文并翻译 | 示例

摘要

Layered semiconductor structures like delta-dopings and buried amorphizations, where modified optoelectronic features result simultaneously from material composition and from device design, can considerably widen optoelectronic applications of conventional materials. Multi-interface novel devices (MINDs) based on a nanoscale Si-layered system buried within the heavily P-doped Si wafer have an unusual reflection, absorption and internal light propagation, which can be dominated by a dense free-carrier gas confined within a surface potential well. First, a model of optical functions of the heavily doped Si:P using experimental data published previously for extremely heavily P-doped Si using the Transition Matrix Approach (TMA) to simulate the electromagnetic optical response and field propagation has been constructed. The dielectric function combines oscillation functions and a dense free-carrier gas (Lorentz-Drude approach) and can take into account an inhomogeneous P-doping distribution. Next, an optical model of the real multi-interface device, based on electron microscopy data, has been constructed. A simplified sequence of buried, optically active interfaces and corresponding layers (with transformed material and refraction indexes) is possible due to a planar geometry. Finally, we compare our simulated and experimental reflectivity. In this way we could determine particularly difficult-to-measure parameters. The method presented could be useful for device characterization during the fabrication
机译:分层半导体结构(如增量掺杂和掩埋非晶化),其中材料成分和器件设计同时产生了改进的光电特征,可以大大拓宽传统材料的光电应用范围。基于掩埋在重掺杂P的硅晶片内的纳米级Si层系统的多界面新型器件(MIND)具有异常的反射,吸收和内部光传播,这可以由局限在硅中的致密自由载流子气体来控制。表面势良好。首先,建立了重掺杂Si:P的光学功能模型,该模型使用先前发布的使用过渡矩阵方法(TMA)来模拟电磁光响应和场传播的重度P掺杂硅的实验数据。介电函数结合了振荡函数和密集的自由载气(Lorentz-Drude方法),并且可以考虑不均匀的P掺杂分布。接下来,基于电子显微镜数据,构建了真正的多接口设备的光学模型。由于平面几何形状,可以简化掩埋的光学活性界面和相应层(具有转换的材料和折射率)的序列。最后,我们比较了模拟反射率和实验反射率。这样我们可以确定特别难以测量的参数。提出的方法可能有助于制造过程中的器件表征

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号