首页> 外文学位 >Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems.
【24h】

Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems.

机译:适用于小型UAS感知和回避系统的机载碰撞检测和回避。

获取原文
获取原文并翻译 | 示例

摘要

The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft.;The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range.;In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of collision risk using the uncorrelated encounter model (UEM) developed by MIT Lincoln Laboratory. We evaluate the proposed approach using Monte Carlo simulations and compare the performance with linearly extrapolated collision detection logic.;For the path planning and collision avoidance part, we present multiple reactive path planning algorithms. We first propose a collision avoidance algorithm based on a simulated chain that responds to a virtual force field produced by encountering intruders. The key feature of the proposed approach is to model the future motion of both the intruder and the ownship using a chain of waypoints that are equally spaced in time. This timing information is used to continuously re-plan paths that minimize the probability of collision. Second, we present an innovative collision avoidance logic using an ownship centered coordinate system. The technique builds a graph in the local-level frame and uses the Dijkstra's algorithm to find the least cost path. An advantage of this approach is that collision avoidance is inherently a local phenomenon and can be more naturally represented in the local coordinates than the global coordinates. Finally, we propose a two step path planner for ground-based SAA systems. In the first step, an initial suboptimal path is generated using A* search. In the second step, using the A* solution as an initial condition, a chain of unit masses connected by springs and dampers evolves in a simulated force field. The chain is described by a set of ordinary differential equations that is driven by virtual forces to find the steady-state equilibrium. The simulation results show that the proposed approach produces collision-free plans while minimizing the path length.;To move towards a deployable system, we apply collision detection and avoidance techniques to a variety of simulation and sensor modalities including camera, radar and ADS-B along with suitable tracking schemes.;Keywords: unmanned aircraft system, small UAS, sense and avoid, minimum sensing range, airborne collision detection and avoidance, collision detection, collision risk assessment, collision avoidance, conflict detection, conflict avoidance, path planning.
机译:将无人机系统(UAS)集成到国家领空的需求不断增长,这是由于UAS行业的快速发展推动的,尤其是重量不到55磅的小型UAS。但是,由于其构成的碰撞风险,安全性和监管问题,其使用受到联邦航空管理局法规的限制。因此,在民航当局可以批准UAS的常规飞行操作之前,UAS必须配备与有人驾驶飞机的“见避”要求相当的“避见”技术。“避避”问题包括几个重要方面,包括:法规和系统级要求,设计规范和性能标准,入侵者检测和跟踪,碰撞风险评估以及最终的路径规划和避免碰撞。在本文中,我们的主要重点是开发一种碰撞检测,风险评估和规避框架,该框架在计算上是可以承受的,并且适合在机载小型UAS上运行。首先,我们介绍了“避免”(SAA)系统的最小检测范围。我们提出一种近似的闭合形式分析解决方案,以计算最小感测范围,以安全地避免即将发生的碰撞。然后使用达到所需最小感测范围的雷达传感器原型演示了该方法。在碰撞风险评估和碰撞预测领域,我们提出了两种方法来估算遭遇场景的碰撞风险。第一种是确定性方法,与有人驾驶航空中的交通预警和防撞(TCAS)方法类似。我们通过使用泰勒级数逼近导出解析表达式来传播误差方差,从而扩展了解决状态估计不确定性的方法。为了解决意外的入侵行为,我们提出了一种创新的概率方法,可以使用麻省理工学院林肯实验室开发的不相关遭遇模型(UEM)来量化可能的入侵者轨迹并估算发生碰撞风险的可能性。我们使用蒙特卡洛仿真评估了所提出的方法,并将其性能与线性外推碰撞检测逻辑进行了比较。;对于路径规划和避免碰撞部分,我们提出了多种反应性路径规划算法。我们首先提出一种基于模拟链的防撞算法,该算法可响应遇到入侵者时产生的虚拟力场。提出的方法的关键特征是使用时间间隔相等的一连串航路点来建模入侵者和拥有者的未来运动。此计时信息用于连续重新规划路径,以最大程度地减少冲突的可能性。其次,我们提出了一种创新的防撞逻辑,它使用了以居者为中心的坐标系。该技术在局部级别的框架中构建图形,并使用Dijkstra的算法找到成本最低的路径。这种方法的优势在于,避免碰撞本质上是一种局部现象,与全局坐标相比,在局部坐标中可以更自然地表示出来。最后,我们为基于地面的SAA系统提出了两步路径规划器。第一步,使用A *搜索生成初始次优路径。第二步,使用A *解作为初始条件,通过弹簧和阻尼器连接的单位质量链在模拟力场中演化。该链由一组常微分方程描述,该方程由虚拟力驱动以找到稳态平衡。仿真结果表明,所提出的方法能够在不产生碰撞的情况下最大程度地缩短路径长度。为了实现可部署的系统,我们将碰撞检测和避免技术应用于多种仿真和传感器模式,包括相机,雷达和ADS-B关键字:无人飞机系统,小型UAS,感知和避免,最小感知范围,机载碰撞检测和避免,碰撞检测,碰撞风险评估,碰撞避免,冲突检测,避免冲突,路径规划。

著录项

  • 作者

    Sahawneh, Laith Rasmi.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Robotics.;Aerospace engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号