首页> 外文学位 >Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes.
【24h】

Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes.

机译:纳米结构嵌段共聚物/离子液体膜中的离子传输。

获取原文
获取原文并翻译 | 示例

摘要

Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control.;The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition.;The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there is incredible freedom in designing the block copolymer architecture in order to optimize the mechanical and other properties of the membrane without sacrificing conductivity. The derived scaling relationships are shown to be general for many block copolymer and ionic liquid chemistries.;In certain cases, the mechanism of ion conduction in the ionic liquid is affected by block copolymer nanoconfinement. The introduction of excess neutral imidazole to [Im][TFSI] leads to enhanced proton conductivity as well as a high H+ transference number due to facilitated proton hopping between imidazole molecules. We show that there is increased proton hopping when the nonstoichiometric ionic liquid is confined to lamellar block copolymer nanodomains, which we hypothesize is due to changes in the hydrogen bond structure of the ionic liquid under confinement. This, in combination with unique ion aggregation behavior, leads to a lower activation energy for macroscopic ion transport compared to that in a corresponding homopolymer/ionic liquid mixture.;Through this work, we further the understanding of the relationship between membrane composition, structure, and ion transport. The findings presented herein portend the rational design of nanostructured membranes having improved mechanical properties and conductivity.
机译:将离子液体掺入一个嵌段共聚物微相中提供了一个平台,用于将离子液体的出色电化学性能与嵌段共聚物提供的许多有利属性相结合。特别地,嵌段共聚物在热力学上自组装成有序的纳米结构,可以对其进行工程设计以提供耐用的机械支架并将离子液体模板化为连续的传导离子的纳米通道。了解离子液体的添加如何影响嵌段共聚物的热力学自组装,以及离子液体对嵌段共聚物纳米域的限制如何影响其离子传导性能对于可预测的结构性质控制至关重要;嵌段共聚物/离子液体混合物显示出让人联想到嵌段共聚物与选择性分子溶剂的混合物。在由咪唑双(三氟甲基磺酰基)酰亚胺([Im] [TFSI])的混合物组成的模型系统中,观察到与薄片,六角形密堆积圆柱体,体心立方和面心立方取向的胶束相对应的各种有序微结构。 )和聚(苯乙烯-b-2-乙烯基吡啶)(PS-b-P2VP)。与嵌段共聚物/分子溶剂混合物相比,每个PS-b-P2VP链所占的界面面积在加入[Im] [TFSI]后减小,表明PS-b-P2VP的有效偏析强度显着提高。膜结构与离子电导率之间的关系通过比例关系的发展得以阐明,该比例关系描述了嵌段共聚物/离子液体混合物的离子电导率随膜组成和温度的变化。结果表明,影响电导率的主要变量是混合物中离子液体的总体积分数,这意味着在设计嵌段共聚物结构时可以拥有极大的自由度,以便在不牺牲电导率的情况下优化膜的机械性能和其他性能。在许多嵌段共聚物和离子液体化学中,得出的比例关系是通用的。在某些情况下,离子液体在离子液体中的传导机理受嵌段共聚物纳米约束的影响。将过量的中性咪唑引入[Im] [TFSI]可提高质子传导性,并由于咪唑分子之间的质子跳跃而提高了H +转移数。我们表明,当非化学计量离子液体被限制在片状嵌段共聚物纳米域时,质子跳跃会增加,我们假设这是由于离子液体在限制条件下氢键结构的变化所致。与相应的均聚物/离子液体混合物相比,与独特的离子聚集行为相结合,可导致宏观离子传输的活化能更低。;通过这项工作,我们进一步了解了膜组成,结构,和离子传输。本文提出的发现预示了具有改善的机械性能和导电性的纳米结构膜的合理设计。

著录项

  • 作者

    Hoarfrost, Megan Lane.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry Polymer.;Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号