首页> 外文学位 >Atomic scale metrology and modeling of mechanical and piezoelectric properties in semiconducting nanowires.
【24h】

Atomic scale metrology and modeling of mechanical and piezoelectric properties in semiconducting nanowires.

机译:半导体纳米线的原子尺度计量学和机械和压电特性建模。

获取原文
获取原文并翻译 | 示例

摘要

Semiconducting nanowires are envisioned as suitable building blocks for next generation electronic and photonic devices because of their interesting optical, mechanical and electroemechanical properties. Various techniques have been developed to fabricate the nanostructures of semiconducting materials in different morphologies like nanowires, nanobelts etc. However, the optimal use of these nanostructures in future devices requires component level characterization of individual building blocks. Experimental methods, direct and indirect, are under development to characterize the material properties of these individual nanostructures. In parallel with the experimental investigations, theoretical modeling is essential to accurately capture unique phenomenon observed at the nanoscale thereby bridging the gaps between experiments and theory. The theoretical models, validated against experimentation, can thus be used to perform design oriented parametric studies for optimal performance of devices.;In this work, the mechanical properties of semiconducting zinc oxide (ZnO) and gallium nitride (GaN) nanowires under uniaxial tension were investigated using atomistic modeling. The computational findings were compared against the appropriate uniaxial tensile experiments for a direct comparison. A fundamental understanding of size dependent elastic behavior was developed for ZnO and GaN nanowires using semi-empirical methods. Failure modes of these nanowires were also investigated and the observed discrepancies were addressed by performing more accurate first principles-based density functional theory (DFT) calculations. Quantum mechanical calculations also allowed us to probe the electromechanical behavior of these nanowires to explore the size effects on piezoelectric coefficients. In addition to atomistic modeling, atomic-level metrological experiments were performed on individual GaN nanowires using Atom Probe Tomography (APT) with the objective of characterizing dopant concentrations. It was envisioned that such atomic-level information would be relevant to be incorporated in atomistic models for a better comparison with experimentally measured properties, in particular for the electrical and electromechanical properties. This research work is expected to define pathways to reliably establish structure-property relationships at the nanoscale in semiconducting nanowires.
机译:半导体纳米线由于其令人感兴趣的光学,机械和机电特性而被设想为下一代电子和光子设备的合适构建基块。已经开发了各种技术来制造具有不同形态的半导体材料的纳米结构,例如纳米线,纳米带等。但是,在未来的设备中对这些纳米结构的最佳使用要求对各个构件进行组分级表征。正在开发直接和间接的实验方法以表征这些单个纳米结构的材料特性。在进行实验研究的同时,理论建模对于准确捕获纳米级观察到的独特现象至关重要,从而弥合了实验与理论之间的空白。经过实验验证的理论模型可用于进行面向设计的参数研究,以实现器件的最佳性能。在这项工作中,半导体氧化锌(ZnO)和氮化镓(GaN)纳米线在单轴张力下的力学性能为使用原子模型进行调查。将计算结果与适当的单轴拉伸实验进行比较,以进行直接比较。使用半经验方法对ZnO和GaN纳米线的尺寸依赖性弹性行为有了基本的了解。还研究了这些纳米线的失效模式,并通过执行更精确的基于第一原理的密度泛函理论(DFT)计算来解决观察到的差异。量子力学计算还使我们能够探查这些纳米线的机电行为,以探索尺寸对压电系数的影响。除了原子建模之外,还使用原子探针层析成像(APT)对单个GaN纳米线进行了原子级计量实验,目的是表征掺杂剂浓度。可以预见,为了更好地与实验测量的特性(尤其是电气和机电特性)进行比较,可以将此类原子级信息纳入原子模型中。预期这项研究工作将确定在半导体纳米线中的纳米尺度上可靠地建立结构-性质关系的途径。

著录项

  • 作者

    Agrawal, Ravi.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Mechanical.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号