...
首页> 外文期刊>Acta Materialia >CYCLIC FATIGUE OF INTRINSICALLY BRITTLE CERAMICS IN CONTACT WITH SPHERES
【24h】

CYCLIC FATIGUE OF INTRINSICALLY BRITTLE CERAMICS IN CONTACT WITH SPHERES

机译:与球接触的本征脆性陶瓷的循环疲劳

获取原文
获取原文并翻译 | 示例
           

摘要

Contact damage modes in cyclic loading with spheres are investigated in three nominally brittle ceramics, soda-lime glass, porcelain and fine-grain silicon nitride, in moist environments. Initial damage at small numbers of cycles and low loads consists of tensile-driven macroscopic cone cracks (“brittle” mode). Secondary damage at large numbers of cycles and high loads consists of shear-driven distributed micro- damage (“quasi-plastic” mode), with attendant radial cracks and a new form of deeply penetrating subsidi- ary cone cracks. Strength tests on indented specimens are used to quantify the degree of damage. Both damage modes degrade the strength f the first, immediately after cone crack initiation, relatively slowly, the second, after development of radial cracks, much more rapidly. A fracture mechanics model describing the first mode, based on time-integration of slow growth of cone cracks, is presented. This model provides simple power-law relations for the remaining strength in terms of number of cycles and contact load for materials design. Extrapolations of these relations into the quasi-plastic region are shown to be non-conser- vative, highlighting the need for further understanding of the deleterious quasi-plastic mode in tougher cer- amics. Comparison with static contact data indicates a strong mechanical (as opposed to chemical) component in the cyclic fatigue in the quasi-plastic region.
机译:在潮湿环境中,对三种名义上易碎的陶瓷,钠钙玻璃,瓷和细晶粒氮化硅研究了球体循环载荷下的接触破坏模式。在少量循环和低负荷下的初始损坏是由拉伸驱动的宏观锥形裂纹(“脆性”模式)组成的。在大量循环和高负荷下的二次破坏包括剪切驱动的分布式微破坏(“准塑性”模式),伴随的径向裂纹和深穿透的次生圆锥裂纹的新形式。压痕试样的强度测试用于量化损伤程度。两种破坏方式首先在锥形裂纹萌发后立即使强度降低,而在径向裂纹发展之后则相对较慢地降低强度,其次是迅速地。提出了基于慢速裂纹扩展的时间积分的描述第一模式的断裂力学模型。该模型根据材料设计的循环次数和接触载荷为剩余强度提供了简单的幂律关系。将这些关系外推到准塑性区被证明是非保守的,这凸显了需要进一步了解更坚硬的陶瓷中的有害准塑性模式。与静态接触数据的比较表明,准塑性区循环疲劳中有很强的机械(相对于化学)成分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号