...
首页> 外文期刊>Journal of Applied Physics >A finite element study of balloon expandable stent for plaque and arterial wall vulnerability assessment
【24h】

A finite element study of balloon expandable stent for plaque and arterial wall vulnerability assessment

机译:球囊扩张支架用于斑块和动脉壁易损性评估的有限元研究

获取原文
获取原文并翻译 | 示例
           

摘要

The stresses induced within plaque tissues and arterial layers during stent expansion inside an atherosclerotic artery can be exceeded from the yield stresses of those tissues and, consequently, lead to plaque or arterial layer rupture. The distribution and magnitude of the stresses in each component involved in stenting might be clearly different for different plaque types and different arterial layers. In this study, a nonlinear finite element simulation was employed to investigate the effect of plaque composition (calcified, cellular, and hypocellular) on the stresses induced in the arterial layers (intima, media, and adventitia) during implantation of a balloon expandable coronary stent into a stenosed artery. The atherosclerotic artery was assumed to consist of a plaque and normal/healthy arterial tissues on its outer side. The results indicated a significant influence of plaque types on the maximum stresses induced within the plaque wall and arterial layers during stenting but not when computing maximum stress on the stent. The stress on the stiffest calcified plaque wall was in the fracture level (2.38 MPa), whereas cellular and hypocellular plaques remain stable owing to less stress on their walls. Regardless of plaque types, the highest von Mises stresses were observed on the stiffest intima layer, whereas the lowest stresses were seen to be located in less stiff media layer. The computed stresses on the intima layer were found to be high enough to initiate a rupture in this stiff layer. These findings suggest a higher risk of arterial vascular injury for the intima layer, while a lower risk of arterial injury for the media and adventitia layers.
机译:在动脉粥样硬化动脉内支架扩张期间在斑块组织和动脉层内引起的应力可被那些组织的屈服应力所超过,因此导致斑块或动脉层破裂。对于不同的斑块类型和不同的动脉层,与支架有关的每个组件中的应力分布和大小可能明显不同。在这项研究中,非线性有限元模拟被用来研究斑块组成(钙化,细胞和低细胞)对球囊扩张型冠状动脉支架植入过程中在动脉层(内膜,中膜和外膜层)引起的应力的影响。进入狭窄的动脉。假定动脉粥样硬化动脉由斑块和外侧的正常/健康动脉组织组成。结果表明,在支架置入过程中,斑块类型对斑块壁和动脉层内引起的最大应力有显着影响,但在计算支架上的最大应力时却没有。最坚硬的钙化斑块壁上的应力处于断裂水平(2.38 MPa),而细胞壁和下层斑块由于壁上的应力较小而保持稳定。不论斑块类型如何,在最硬的内膜层观察到最高的von Mises应力,而最低的应力位于不那么硬的介质层。发现内膜层上的计算应力足够高,可以在该硬质层中引起破裂。这些发现表明内膜层的动脉血管损伤的风险较高,而中膜层和外膜层的动脉损伤的风险较低。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第4期|1-8|共8页
  • 作者单位

    Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号