...
首页> 外文期刊>Materials Science and Engineering >The failure mechanism at adiabatic shear bands of titanium alloy: High-precision survey using precession electron diffraction and geometrically necessary dislocation density calculation
【24h】

The failure mechanism at adiabatic shear bands of titanium alloy: High-precision survey using precession electron diffraction and geometrically necessary dislocation density calculation

机译:钛合金绝热剪切带的破坏机理:采用旋进电子衍射和几何上必要的位错密度计算的高精度测量

获取原文
获取原文并翻译 | 示例
           

摘要

The difficulty of obtaining key information, such as the crystal orientation and geometrically necessary dislocation (GND) density distribution, from a large deformation region in an adiabatic shear band (ASB) has hindered further study of the ASB failure mechanism in titanium alloys. In this work, the crystal orientation information of the failure position and surrounding region in ASS of a Ti-5Al-2.5Cr-0.5Fe-4.5Mo-1Sn-2Zr-3Zn alloy was obtained via transmission electron microscopy (TEM) and precession electron diffraction (PED) with a high spatial resolution. The GND density distribution was calculated and the adiabatic shear failure mechanism was revealed from the collected data. ASBs (original width: similar to 3-4 mu m) formed in the cylinder sample during dynamic compression (strain rate: similar to 3000 s(-1)). In the transition region at the edge of ASB, the grains were severely elongated along the direction parallel to the ASB boundaries with an average grain size on the order of pm and an average GND density of 5.5374 x 10(15)/m(2) in the a phase. Relatively strong 0001 textures and weak -12-10 textures were observed. However, significant dynamic-recrystallization-dominated grain refinement in ASB, especially at the crack tip, resulted in many ultrafine equiaxed recrystallized grains (10 nm level) and weakened textures. The highest average GND density (8.6242 x 10(15)/m(2), in alpha phase) occurred in the crack tip region. Moreover, the vicinity of the "primary microcracks" in the main crack extension line was characterized by combinations of an extremely high GND density work hardening region and a group of low GND density recrystallized grains. This indicates that cracks in the ASB were initiated by the deformation incompatibility between the antecedent recrystallization region and the surrounding high work hardening region.
机译:从绝热剪切带(ASB)的较大变形区域获得关键信息(如晶体取向和几何上必要的位错(GND)密度分布)的困难,阻碍了钛合金ASB破坏机理的进一步研究。通过透射电子显微镜(TEM)和进动电子,获得了Ti-5Al-2.5Cr-0.5Fe-4.5Mo-1Sn-2Zr-3Zn合金的ASS失效位置和周围区域的晶体取向信息。具有高空间分辨率的衍射(PED)。计算了GND的密度分布,并从收集的数据中揭示了绝热剪切破坏的机理。在动态压缩(应变率:类似于3000 s(-1))时,圆柱样品中会形成ASB(原始宽度:类似于3-4μm)。在ASB边缘的过渡区域中,晶粒沿平行于ASB边界的方向严重拉长,平均晶粒尺寸为pm级,平均GND密度为5.5374 x 10(15)/ m(2)。在一个阶段。观察到相对强的<0001>纹理和弱的<-12-10>纹理。但是,在ASB中,特别是在裂纹尖端,显着以动态再结晶为主的晶粒细化导致许多超细等轴重结晶晶粒(10 nm级),并且织构减弱。最高的平均GND密度(在α相中为8.6242 x 10(15)/ m(2),出现在裂纹尖端区域)。此外,主裂纹扩展线中的“主要微裂纹”附近的特征在于极高的GND密度加工硬化区域和一组低GND密度的再结晶晶粒。这表明,ASB中的裂纹是由先前的再结晶区和周围的高工作硬化区之间的变形不相容性引发的。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号