...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Defect- and strain-enhanced cavity formation and Au precipitation at nano-crystalline ZrO_2/SiO_2/Si interfaces
【24h】

Defect- and strain-enhanced cavity formation and Au precipitation at nano-crystalline ZrO_2/SiO_2/Si interfaces

机译:纳米ZrO_2 / SiO_2 / Si界面处缺陷和应变增强腔的形成和Au析出

获取原文
获取原文并翻译 | 示例
           

摘要

Defect- and strain-enhanced cavity formation and Au precipitation at the interfaces of a nano-crystalline ZrO_2/SiO_2/Si multilayer structure resulting from 2 MeV Au* irradiation at temperatures of 160 and 400 K have been studied. Under irradiation, loss of oxygen is observed, and the nano-crystalline grains in the ZrO_2 layer increase in size. In addition, small cavities are observed at the ZrO_2/SiO_2 interface with the morphology of the cavities being dependent on the damage state of the underlying Si lattice. Elongated cavities are formed when crystallinity is still retained in the heavily-damaged Si substrate; however, the morphology of the cavities becomes spherical when the substrate is amorphized. With further irradiation, the cavities appear to become stabilized and begin to act as gettering sites for the Au. As the cavities become fully saturated with Au, the ZrO_2/SiO_ 2 interface then acts as a gettering site for the Au. Analysis of the results suggests that oxygen diffusion along the grain boundaries contributes to the growth of cavities and that oxygen within the cavities may affect the gettering of Au. Mechanisms of defect- and strain-enhanced cavity formation and Au precipitation at the interfaces will be discussed with focus on oxygen diffusion and vacancy accumulation, the role of the lattice strain on the morphology of the cavities, and the effect of the binding free energy of the cavities on the Au precipitation.
机译:研究了在160和400 K的温度下2 MeV Au *辐照导致的纳米晶体ZrO_2 / SiO_2 / Si多层结构界面处缺陷和应变增强的空穴形成和Au沉淀。在辐射下,观察到氧的损失,并且ZrO_2层中的纳米晶粒尺寸增大。此外,在ZrO_2 / SiO_2界面处观察到小的空穴,空穴的形态取决于下面的Si晶格的损伤状态。当结晶度仍然保留在严重损坏的Si基板中时,会形成拉长的孔洞;然而,当衬底非晶化时,空腔的形态变为球形。随着进一步的照射,腔似乎变得稳定并开始充当Au的吸气部位。当腔体被Au完全饱和时,ZrO_2 / SiO_2界面将充当Au的吸杂位。结果分析表明,氧沿晶界扩散有助于空洞的生长,并且空洞内的氧可能会影响金的吸杂。讨论了缺陷和应变增强腔形成和界面处Au沉淀的机理,重点是氧扩散和空位积累,晶格应变对腔形态的作用以及结合自由能的影响。金沉淀的空洞。

著录项

  • 来源
  • 作者单位

    Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA,Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA, Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA;

    University of Nebraska Medical Center, Omaha, NE 68198, USA;

    Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA;

    Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA,Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nano-crystalline zirconia; grain growth; oxygen migration; cavity formation; cavity morphology; au precipitation;

    机译:纳米氧化锆;晶粒长大;氧迁移;空穴形成;空穴形态;析出;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号