首页> 外文期刊>International journal of adaptive control and signal processing >Gradient-based recursive parameter estimation for a periodically nonuniformly sampled-data Hammerstein-Wiener system based on the key-term separation
【24h】

Gradient-based recursive parameter estimation for a periodically nonuniformly sampled-data Hammerstein-Wiener system based on the key-term separation

机译:基于关键项分离的周期性非均匀采样数据Hammerstein-Wiener系统基于梯度的递归参数估计

获取原文
获取原文并翻译 | 示例

摘要

The identification of the Hammerstein-Wiener (H-W) systems based on the nonuniform input-output dataset remains a challenging problem. This article studies the identification problem of a periodically nonuniformly sampled-data H-W system. In addition, the product terms of the parameters in the H-W system are inevitable. In order to solve the problem, the key-term separation is applied and two algorithms are proposed. One is the key-term-based forgetting factor stochastic gradient (KT-FFSG) algorithm based on the gradient search. The other is the key-term-based hierarchical forgetting factor stochastic gradient (KT-HFFSG) algorithm. Compared with the KT-FFSG algorithm, the KT-HFFSG algorithm gives more accurate estimates. The simulation results indicate that the proposed algorithms are effective.
机译:基于非均匀输入输出数据集的Hammerstein-Wiener(H-W)系统识别仍然是一个具有挑战性的问题。本文研究了周期性非均匀采样数据H-W系统的识别问题。此外,硬件系统中参数的产品项是不可避免的。为了解决该问题,该文采用键项分离法,提出了两种算法。一种是基于梯度搜索的基于关键项的遗忘因子随机梯度(KT-FFSG)算法。另一种是基于关键项的分层遗忘因子随机梯度(KT-HFFSG)算法。与KT-FFSG算法相比,KT-HFFSG算法给出了更准确的估计。仿真结果表明,所提算法是有效的。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号