首页> 外文期刊>IEEE Design & Test of Computers Magazine >Logic Design for Printability Using OPC Methods
【24h】

Logic Design for Printability Using OPC Methods

机译:使用 OPC 方法进行可打印性逻辑设计

获取原文
获取原文并翻译 | 示例

摘要

THE RAPIDLY INCREASING design process interactions of the 65 nm and future device generations will present a considerable challenge to logic manufacturers. The main lithographic issues are decreasing focus budgets caused by high numerical aperture (greater than 0.8) lenses, and increased sensitivity to exposure dose and reticle critical-dimension (CD) errors caused by lower lithographic linearity. Extrapolating the known linearity loss and the yield issues observed in the 130- and 90-nm generations points to the likelihood of significant yield loss at the 65-nm generation. The reason for the reduced yields is widely attributed to pattern-specific issues, where traditional physical design rules are increasingly unable to guarantee high yield for a device. Nonoptimal points in the increasingly complex lithography process space inevitably interact with difficult physical-design locations to create semi-random pattern failures. Therefore, designers will need to employ new strategies as part of the physical-design flow to solve these intertwined patterning design issues. The steps that create physical shape data in a typical logic device design-to-reticle flow are cell layout, place and route, tapeout, OPC or RET, data fracture, and reticle build. Here, we define OPC as the transformation of reticle data to compensate for lithographic and process distortions so that the final wafer pattern is as close to the target pattern--the designed layout--as possible. We define RETs as the general class of transformations for reticle data that aim to improve the patterning process window; therefore, OPC is a subset of RET. DFM is traditionally considered to be implemented at the cell layout or routing stages of this flow. Examples include the optimization of a layout based on critical-defect area, the addition of redundant contacts and vias, wire spreading, upsizing of metal landing pads, and the addition of dummy metal tiles to improve the planarity after chemical-mechanical planarization (CMP). We presented a detailed analysis of these techniques in an earlier work. In contrast, this article analyzes the possibility of extending these traditional methods into the OPC stage and introduces new post-tapeout RET methods for improving printability.
机译:65 nm 和未来几代器件的快速增长设计工艺相互作用将给逻辑制造商带来相当大的挑战。光刻的主要问题是高数值孔径(大于 0.8)透镜导致的对焦预算减少,以及光刻线性度较低导致对曝光剂量和光刻临界尺寸 (CD) 误差的敏感度增加。推断已知的线性损失和在 130 nm 和 90 nm 世代中观察到的良率问题表明,在 65 nm 世代中可能会出现显着的良率损失。良率降低的原因主要归因于特定于模式的问题,传统的物理设计规则越来越无法保证器件的高良率。在日益复杂的光刻工艺空间中,非最优点不可避免地与困难的物理设计位置相互作用,从而产生半随机图案故障。因此,设计人员需要采用新的策略作为物理设计流程的一部分,以解决这些相互交织的图案设计问题。在典型的逻辑器件设计到光罩流中创建物理形状数据的步骤包括单元布局、布局和布线、流片、OPC 或 RET、数据断开和光罩构建。在这里,我们将OPC定义为对光刻数据进行转换,以补偿光刻和工艺失真,从而使最终晶圆图案尽可能接近目标图案(设计的布局)。我们将RET定义为十字线数据的一般转换类别,旨在改善图案化过程窗口;因此,OPC 是 RET 的一个子集。 DFM 传统上被认为是在该流的单元布局或路由阶段实现的。例如,基于临界缺陷区域优化布局、增加冗余触点和过孔、铺线、加大金属着陆垫的尺寸,以及添加虚拟金属瓦以提高化学机械平坦化 (CMP) 后的平面度。我们在早期的工作中对这些技术进行了详细分析。相比之下,本文分析了将这些传统方法扩展到OPC阶段的可能性,并介绍了新的流片后RET方法,以提高可印刷性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号