...
首页> 外文期刊>IEEE Design & Test of Computers Magazine >Guest Editors' Introduction: Synthetic Biology
【24h】

Guest Editors' Introduction: Synthetic Biology

机译:Guest Editors' Introduction: Synthetic Biology

获取原文
获取原文并翻译 | 示例
           

摘要

SYNTHETIC BIOLOGY IS trending, as evidenced by the recent achievements in biofuels (microbial production of diesel fuels from fatty acids in Escherichia coli (E. coli) and yeast) and in biother-apeutics (microbial production of artemisnic acid as a viable source of antimalarial drugs). The International Genetically Engineered Machine (iGEM) competition in 2011 had over 165 teams and 1000+ undergraduate participants from around the world. Synthetic Biology had a global market which generated $233.8 million in 2008. This is expected to increase to $2.4 billion in 2013. Synthetic biology alone had a chemicals and energy segment worth $80.6 million in 2008 with a projected growth to $1.6 billion in 2013. Synthetic biology is here to stay. Handcrafted genetic circuits and pathways added to well characterized host organisms are one way produce new synthetic biological systems. These circuits and pathways are not easily identified nor readily constructed; they require extensive funding and research efforts spanning multiple years. "Design flows" are ad hoc, involving trial and error, and relying heavily on biologists' intuition and experience. Recall "design compilers" that were dreams in the late 1970s or the "napkin-to-chip" concept in the 1990s? The equivalent conceptual dream in biology now is just beginning to be articulated in many bioengineering fields spanning synthetic biology, metabolic engineering, systems biology, and genetic engineering. The buzz phrasing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号