首页> 外文学位 >Self-assembly and chemo-ligation strategies for polymeric multi-responsive microgels.
【24h】

Self-assembly and chemo-ligation strategies for polymeric multi-responsive microgels.

机译:聚合物多响应微凝胶的自组装和化学连接策略。

获取原文
获取原文并翻译 | 示例

摘要

Microgels are sub-micron to micron-size polymeric particles swollen by a good solvent, sometimes also called hydrogel microparticles or microspheres if swollen in water. In contrast to the behavior of hard spheres, microgels behave more like soft spheres due to both steric repulsion of dangling chains tethered on their rough surface and electrostatic repulsion of charges, which could be compressed by imposing high concentration of microgels (osmotic deswelling) or higher ionic strength (compression of electric double layers). Among all microgels investigated nowadays, poly(N-alkylacrylamide), especially poly(N-isopropylacrylamide) (pNIPAm), microgels are one of the most extensively studied microgel particles due to their volume phase transition (VPT) at lower critical solution temperature (LCST). By incorporation of pH-responsive monomer, such as acrylic acid (AAc), copolymeric pNIPAm-AAc microgels further demonstrate multi-responsivity to temperature, pH, and ionic strength. A temperature-programmed polymerization protocol is proposed for the synthesis of large pNIPAm-AAc microgel particles with a hydrodynamic diameter of 2∼5 microm. To observe the phase behavior of pNIPAm-AAc microgel dispersions, pNIPAm-AAc dispersion at various pH values and concentrations was allowed to age and undergo phase transition in closed system. Immediately after preparation of concentrated pNIPAm-AAc dispersions in closed system, the average hydrodynamic diameter is smaller than the unperturbed diameter due to osmotic deswelling effect. During the aging process, pNIPAm-AAc microgel particles swell while their dynamics slow down. (Sometimes the particle size in aged dispersions is even larger than the unperturbed size!) If the effective volume fraction of pNIPAm-AAc microgel particles reaches a critical value (∼40 %), the local and global crystallization of particles are observed. If the effective volume fraction of pNIPAm-AAc dispersions is beyond packing limit (∼0.74), the compressed particles are observed in the crystalline and/or glassy phase, indicating the softness of pNIPAm-AAc microgels. The formation of crystalline phase should follow a nonergodic path in which microgel particles swell to the extent that they build up weak attractive interaction to allow them to associate while maintaining the opportunity of rearrangement to minimize local Gibbs free energy. The age-dependent thermostability of pNIPAm-AAc microgel dispersions suggests strong attractive interactions evolve between particles during crystallization. The attractive interactions are probably due to the multiple hydrogen bonding between amide and/or carboxylic acid groups on the dangling chains tethered on rough surfaces of pNIPAm-AAc microgel particles.;Finally, to introduce multiple biological "handle"s on the microgel particles for biomedical applications, the Cu(I)-catalyzed azide-terminal alkyne 1,3-dipolar cycloaddition, also called Sharpless-Meldal "click" reaction, is used to functionalize pNIPAm-AAc microgel particles. Glycidyl methacrylate (GMA) and propargyl acrylate (PA) are used to copolymerize with NIPAm and AAc to form multi-responsive microgels with "clickable" azido and acetylene groups respectively. "Clickable" fluorescent dyes are used to demonstrate the clickability of those microgels and epifluorescence microscopy is used to imaging the fluorescent particles after click reactions. Similarly, multi-functional thin films made of those clickable microgels could be fabricated via centrifugal deposition.
机译:微凝胶是被良好溶剂溶胀的亚微米到微米大小的聚合物颗粒,如果在水中溶胀,有时也称为水凝胶微粒或微球。与硬球的行为相反,微凝胶的行为更像软球,这是由于悬空在其粗糙表面上的悬链的空间排斥和电荷的静电排斥,这可以通过施加高浓度的微凝胶(渗透性溶胀)或更高来压缩离子强度(双电层的压缩)。在当今研究的所有微凝胶中,聚(N-烷基丙烯酰胺),尤其是聚(N-异丙基丙烯酰胺)(pNIPAm),由于其在较低的临界溶液温度(LCST)下具有体积相变(VPT),微凝胶是研究最广泛的微凝胶之一)。通过掺入pH响应性单体(例如丙烯酸(AAc)),共聚pNIPAm-AAc微凝胶进一步显示出对温度,pH和离子强度的多响应性。提出了一种程序升温聚合方案,用于合成水动力直径为2〜5微米的大pNIPAm-AAc微凝胶颗粒。为了观察pNIPAm-AAc微凝胶分散体的相行为,在各种pH值和浓度下使pNIPAm-AAc分散体老化并在密闭系统中经历相变。在密闭系统中制备浓缩的pNIPAm-AAc分散体后,由于渗透性溶胀作用,平均流体动力学直径立即小于未扰动直径。在老化过程中,pNIPAm-AAc微凝胶颗粒会溶胀,而动力学会变慢。 (有时老化的分散体中的粒径甚至比未扰动的粒径还要大!)如果pNIPAm-AAc微凝胶颗粒的有效体积分数达到临界值(约40%),则会观察到颗粒的局部和整体结晶。如果pNIPAm-AAc分散液的有效体积分数超出填充极限(〜0.74),则在结晶和/或玻璃态观察到压缩颗粒,表明pNIPAm-AAc微凝胶柔软。结晶相的形成应遵循非遍历路径,其中微凝胶颗粒膨胀到一定程度,以建立微弱的吸引力相互作用,使它们缔合,同时保持重排的机会,以使局部吉布斯自由能最小化。 pNIPAm-AAc微凝胶分散体的随年龄变化的热稳定性表明,在结晶过程中,颗粒之间会形成强烈的吸引力相互作用。有吸引力的相互作用可能是由于连接在pNIPAm-AAc微凝胶颗粒粗糙表面上的悬空链上的酰胺和/或羧酸基团之间存在多个氢键。最后,在微凝胶颗粒上引入了多个生物学“手柄”以用于在生物医学应用中,Cu(I)催化的叠氮化物末端炔烃1,3-偶极环加成反应(也称为Sharpless-Meldal“点击”反应)用于功能化pNIPAm-AAc微凝胶颗粒。甲基丙烯酸缩水甘油酯(GMA)和丙烯酸炔丙酯(PA)用于与NIPAm和AAc共聚,分别形成具有“可点击”叠氮基和乙炔基的多响应性微凝胶。 “可点击的”荧光染料用于证明那些微凝胶的可点击性,而落射荧光显微镜术用于在点击反应后使荧光颗粒成像。类似地,可以通过离心沉积来制造由那些可点击的微凝胶制成的多功能薄膜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号