...
首页> 外文期刊>Journal of Biotechnology >Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium.
【24h】

Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium.

机译:在复杂培养基上生长的青霉链霉菌的基因组规模代谢通量分析。

获取原文
获取原文并翻译 | 示例
           

摘要

Constraint-based metabolic modeling comprises various excellent tools to assess experimentally observed phenotypic behavior of micro-organisms in terms of intracellular metabolic fluxes. In combination with genome-scale metabolic networks, micro-organisms can be investigated in much more detail and under more complex environmental conditions. Although complex media are ubiquitously applied in industrial fermentations and are often a prerequisite for high protein secretion yields, such multi-component conditions are seldom investigated using genome-scale flux analysis. In this paper, a systematic and integrative approach is presented to determine metabolic fluxes in Streptomyces lividans TK24 grown on a nutritious and complex medium. Genome-scale flux balance analysis and randomized sampling of the solution space are combined to extract maximum information from exometabolome profiles. It is shown that biomass maximization cannot predict the observed metabolite production pattern as such. Although this cellular objective commonly applies to batch fermentation data, both input and output constraints are required to reproduce the measured biomass production rate. Rich media hence not necessarily lead to maximum biomass growth. To eventually identify a unique intracellular flux vector, a hierarchical optimization of cellular objectives is adopted. Out of various tested secondary objectives, maximization of the ATP yield per flux unit returns the closest agreement with the maximum frequency in flux histograms. This unique flux estimation is hence considered as a reasonable approximation for the biological fluxes. Flux maps for different growth phases show no active oxidative part of the pentose phosphate pathway, but NADPH generation in the TCA cycle and NADPH transdehydrogenase activity are most important in fulfilling the NADPH balance. Amino acids contribute to biomass growth by augmenting the pool of available amino acids and by boosting the TCA cycle, particularly when using glutamate and aspartate. Depletion of glutamate and aspartate causes a distinct shift in fluxes of the central carbon and nitrogen metabolism. In the current work, hurdles encountered in flux analysis at a genome-scale level are addressed using hierarchical flux balance analysis and uniform sampling of the constrained solution space. This general framework can now be adopted in further studies of S. lividans, e.g., as a host for heterologous protein production
机译:基于约束的代谢建模包括各种出色的工具,可根据细胞内代谢通量评估实验观察到的微生物的表型行为。结合基因组规模的代谢网络,可以在更复杂的环境条件下更详细地研究微生物。尽管复杂的培养基广泛应用于工业发酵中,并且通常是高蛋白分泌产量的前提条件,但很少使用基因组规模的通量分析方法来研究这种多组分条件。在本文中,提出了一种系统的综合方法来确定在营养丰富且复杂的培养基上生长的淡紫色链霉菌TK24中的代谢通量。基因组规模通量平衡分析和解决方案空间的随机抽样相结合,从代谢组学概况中提取最大信息。结果表明,生物量最大化不能像这样预测所观察到的代谢产物的生产模式。尽管此细胞目标通常适用于分批发酵数据,但需要输入和输出约束来重现所测得的生物量生产率。因此,富媒体不一定导致最大的生物量增长。为了最终识别独特的细胞内通量向量,采用了细胞目标的分级优化方法。在各种经过测试的次要目标中,每通量单位的ATP产量的最大化返回了与通量直方图中的最大频率最接近的一致性。因此,这种唯一的通量估计被认为是生物通量的合理近似值。不同生长期的通量图显示戊糖磷酸途径没有活性氧化部分,但在TCA循环中产生NADPH和NADPH转脱氢酶活性对于实现NADPH平衡最为重要。氨基酸通过增加可用氨基酸库和延长TCA周期来促进生物量的增长,特别是在使用谷氨酸和天冬氨酸时。谷氨酸和天冬氨酸的消耗引起中心碳和氮代谢通量的明显变化。在当前的工作中,使用层次通量平衡分析和受约束溶液空间的均匀采样解决了在基因组规模水平的通量分析中遇到的障碍。现在,该一般框架可用于进一步研究lividans,例如,作为异源蛋白质生产的宿主

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号