首页> 外文学位 >Electronic structure and quantized surface electron accumulation of narrow band gap semiconductors.
【24h】

Electronic structure and quantized surface electron accumulation of narrow band gap semiconductors.

机译:窄带隙半导体的电子结构和表面电子累积化。

获取原文
获取原文并翻译 | 示例

摘要

Narrow band gap semiconductors play a crucial role in thin film photovoltaic cells and optoelectronics devices operating in the infrared region of visible spectrum. The interactions between the valence and conduction bands due to the narrow band gap have a big influence on the electronic structure and the device performance of these materials. The surface and bulk electronic properties of narrow band gap semiconductors were investigated using angle resolved photoelectron spectroscopy (ARPES), x-ray absorption spectroscopy and x-ray emission spectroscopy. Comparisons were made between the experimental results and density functional theory band structure calculations.;Intrinsic electron accumulation near the surface of clean InN was directly observed by ARPES. The accumulation layer is discussed in terms of the bulk Fermi level (EF) lying below the pinned surface E F, with a confining potential formed normal to surface due to the downward band bending facilitated by donor type surface states or nitrogen vacancies. Various spectroscopic techniques were used to measure this band bending. The energy of the Fermi level and the size of the Fermi surface for these quantum well states could be controlled by varying the method of surface preparation and by the adsorption of potassium on the surface. Intermixing between the heavy and light hole valence bands in the intrinsic quantum well potential associated with the surface electron accumulation layer results in an inverted band structure, with the valence band maximum lying away from the Brillouin zone center. Similarly, the electronic band structure of CdO was investigated and quantized electron subbands were observed above the valence band maximum. The origin of the accumulation layer is discussed in terms of the bulk band structure of CdO calculated using quasi particle corrected density functional theory.;High electron density at the surface of these materials provides new opportunities for potential device structures such as sensors, high frequency transmitters and field effect transistors. Therefore the study of their near surface electron accumulation and electronic structure is of importance in understanding the properties of these materials and discovering new application areas.
机译:窄带隙半导体在可见光谱的红外区域中工作的薄膜光伏电池和光电器件中起着至关重要的作用。价带和导带之间的相互作用由于窄的带隙而对这些材料的电子结构和器件性能产生很大影响。使用角分辨光电子能谱(ARPES),X射线吸收光谱和X射线发射光谱研究了窄带隙半导体的表面和体电子性质。实验结果与密度泛函理论能带结构计算进行了比较。ARPES直接观察到干净InN表面附近的本征电子积累。根据位于被钉扎表面E F下方的体费米能级(EF)讨论了堆积层,由于施主型表面态或氮空位促进了向下的能带弯曲,形成了垂直于表面的限制电位。各种光谱技术用于测量该带的弯曲。对于这些量子阱态,费米能级的能量和费米表面的大小可以通过改变表面制备方法和钾在表面上的吸附来控制。与表面电子累积层相关的本征量子阱势中的重和轻空穴价带之间的混合导致倒带结构,最大价带远离布里渊区中心。同样,研究了CdO的电子能带结构,并在价带最大值以上观察到了量化的电子子带。根据准粒子校正密度泛函理论计算的CdO的体带结构来讨论积聚层的起源。;这些材料表面的高电子密度为潜在的器件结构(例如传感器,高频发射器)提供了新的机会和场效应晶体管。因此,研究它们的近表面电子积累和电子结构对于理解这些材料的性质和发现新的应用领域具有重要意义。

著录项

  • 作者

    Colakerol, Leyla.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号